----------------------------------- ---------------------------------------------------
Volume 10, Issue 1 (Semi-Annual 2025)                   CIAUJ 2025, 10(1): 41-59 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Maleki A, Saligheh E, Shahbazi Y, Ghaffari A. Optimizing the Ratio of Window to Floor Area in Classrooms to Achieve Thermal and Visual Comfort for Students. CIAUJ 2025; 10 (1) :41-59
URL: http://ciauj-tabriziau.ir/article-1-541-en.html
1- Department of Architecture, Faculty of Architecture and Urbanism, Tabriz Islamic Art University, Tabriz, Iran , a.maleki@tabriziau.ac.ir
2- Department of Architecture, Faculty of Architecture and Urbanism, Tabriz Islamic Art University, Tabriz, Iran
Abstract:   (609 Views)
Architectural design is a complex process in which multiple issues must be addressed simultaneously. The ratio of window area to floor area in classrooms, especially in cold regions, plays a significant role in enhancing both visual and thermal comfort, as it directly influences the amount of natural light and radiant heat entering the space. This reduces the need for artificial lighting and dependency on heating systems. However, an excessively high ratio can lead to heat loss, energy wastage, and discomfort due to glare. Therefore, determining an optimal window-to-floor area ratio is crucial for ensuring both visual and thermal comfort. This study focuses on a secondary school classroom in Tabriz, a city with a cold climate. The research objectives were optimized using simulation tools such as Honey Bee, Ladybug, and the Octopus optimization plugin. The study concludes that the optimal classroom window-to-floor area ratio ranges between 0.125 and 0.2. Specifically, the best results for glare and adaptive thermal comfort are achieved with a lower ratio within this range. In contrast, the best results for daylight sufficiency occur at the higher end.
Full-Text [PDF 1803 kb]   (37 Downloads)    
Type of Study: Original Article | Subject: Identifying the way of life based on the three components of the body, lifestyle and concepts - meanings
Received: 2024/01/31 | Accepted: 2024/09/27 | ePublished: 2025/06/30

References
1. Alhagla, Kh., Alaa, M., & Elbassuoni, R. (2019). Optimizing Windows for Enhancing Daylighting Performance and Energy Saving. Alexandria Engineering Journal. 58(1):283-90. https:..doi.org.10.1016.j.aej.2019.01.004 [DOI:10.1016/j.aej.2019.01.004]
2. Bakmohammadi, P., & Noorzai, E. (2020). Optimization of the Design of the Primary School Classrooms in Terms of Energy and Daylight Performance Considering Occupants' Thermal and Visual Comfort. Energy Reports. 6 (1):1590-1607. 10.1016.j.egyr.2020.06.008 [DOI:10.1016/j.egyr.2020.06.008]
3. Boubekri M., Lee J. Bub K., & Curry K. (2020). Impact of Daylight Exposure on Sleep Time and Quality of Elementary School Children. European Journal of Teaching and Education. 2(2):10-17. https:..doi.org.10.1016.j.buildenv.2024.111644 [DOI:10.33422/ejte.v2i2.195]
4. Custódio, D., Ghisi, E., & Forgiarini Rupp, R. (2024). Thermal comfort in university classrooms in humid subtropical climate: Field study during all seasons. Building and Environment. 258(4):115-130. https:..doi.org.10.1016.j.buildenv.2024.111644 https://doi.org/10.1016/j.enbuild.2024.114556 [DOI:10.1016/j.buildenv.2024.111644]
5. Dear, R., & Brager, K. (1997). Developing an Adaptive Model of Thermal Comfort and Preference - Final Developing an Adaptive Model of Thermal Comfort and Preference. Final Report on RP-884(ASHRAE Transactions) (pp.104-125).
6. Elwekil, E. (2015). Optimizing Classroom Acoustic Performance to Promote Children's Education and Wellbeing (Published Master's thesis). The University of Arizona, Tucson, Arizona.
7. Fallahtafti, R., & Mahdavinejad, M. (2015). Optimization of Building Shape and Orientation for Better Energy Efficient Architecture. International Journal of Energy Sector Management. 9(4):593-618. https:..doi.org.10.1108.IJESM-09-2014-0001 [DOI:10.1108/IJESM-09-2014-0001]
8. Gursel Dino, I., & Üçoluk, G. (2017). Multiobjective Design Optimization of Building Space Layout, Energy, and Daylighting Performance. Journal of Computing in Civil Engineering. 31(5):201-235. https:..doi.org.10.1061.(ASCE)CP.1943-5487.0000669. [DOI:10.1061/(ASCE)CP.1943-5487.0000669]
9. Javanroodi, K., Vahid, N., & Mahdavinejad, M. (2019). A Novel Design-Based Optimization Framework for Enhancing the Energy Efficiency of High-Rise Office Buildings in Urban Areas. Sustainable Cities and Society. 49(5):362-405. https:..doi.org.10.1016.j.scs.2019.101597 [DOI:10.1016/j.scs.2019.101597]
10. Kent M., Altomonte S., Wilson R., & Tregenza P. (2017). Temporal Effects on Glare Response from Daylight. Building and Environment. 113:49-64. https:..doi.org.10.1016.j.buildenv.2016.09.002 [DOI:10.1016/j.buildenv.2016.09.002]
11. Konis, K., Gamas, A., & Kensek, K. (2016). Passive Performance and Building Form: An Optimization Framework for Early-Stage Design Support. Solar Energy. 125:161-79. https:..doi.org.10.1016.j.solener.2015.12.020. [DOI:10.1016/j.solener.2015.12.020]
12. Kottek M., Grieser J., Beck C., Rudolf B., & Rubel F. (2006). World Map of the Köppen-Geiger Climate Classification Updated. Meteorologische Zeitschrift. 15 (3): 259-263. https:..doi.org.10.1127.0941-2948.2006.0130 [DOI:10.1127/0941-2948/2006/0130]
13. Lakhdari, K., Sriti, L., & Painter, B. (2021). Parametric Optimization of Daylight, Thermal and Energy Performance of Middle School Classrooms, Case of Hot and Dry Regions. Building and Environment. 204(1): 108-143. https:..doi.org.10.1016.j.buildenv.2021.108173 [DOI:10.1016/j.buildenv.2021.108173]
14. Lamberti G., Salvadori G., Leccese F., Fantozzi F., & Bluyssen Ph. (2021). Advancement on Thermal Comfort in Educational Buildings: Current Issues and Way Forward. Sustainability. 13(18):107-123. https:..doi.org.10.3390.su131810315 [DOI:10.3390/su131810315]
15. Mahdavinejad, M., Tahbaz, M., & Dolatabdi, T. (2016). Optimization of Proportions and How to Use the Light Rack in the Architecture of Classrooms. Journal of Fine Arts: Architecture & Urban Planning. 21(2):81-92. https:..doi.org. 10.22059.jfaup.2016.60164 [In Persian]
16. Moghtadinejad, M., & Pashaei, S. (2016). Investigating the Impact of Parametric Architecture Design Process Based on Algorithmic Design, A New Approach in the Digital Architecture Design in Line with Sustainable Architecture Goals. International conference on modern research in civil engineering, architectural and urban development. 3:65-76. https:..sid.ir.paper.910528.en
17. Nesma F., Akila B., Djamel A., & Atef A. (2023). Optimizing Visual Comfort in School Buildings Through Parametric Design. PERIODICO di MINERALOGIA. 92(3):74-91.
18. Nicol, F., Humphreys, M., & Roaf, S. (2012). Adaptive Thermal Comfort Theory, Principles and Practice. Routledge publications. [DOI:10.4324/9780203123010]
19. Niza, I., Mendes da Luz, I., & Eduardo Broday, E. (2023). Thermal Comfort Assessment in University Classrooms: A Discriminant Analysis for Categorizing Individuals According to Gender and Thermal Preferences, Atmosphere. 14:1325-1342. [DOI:10.3390/atmos14091325]
20. Othman, A., & Mohd Mazli, M. (2012). Influences of Daylighting towards Readers' Satisfaction at Raja Tun Uda Public Library, Shah Alam. Procedia - Social and Behavioral Sciences. 68: 244-57. [DOI:10.1016/j.sbspro.2012.12.224]
21. Ouria, M. (2019). Solar Energy Potential According to Climatic and Geometrical Parameters of Cities and Buildings: A Case-Study from Tabriz City- Iran. Urban Climate. 28: 100469. https:..doi.org.https:..doi.org.10.1016.j.uclim.2019.100469. [DOI:10.1016/j.uclim.2019.100469]
22. Pilechiha P., Mahdavinejad M., Pour Rahimian P., Carnemolla P., & Seyedzadeh S. (2020). Multi-Objective Optimisation Framework for Designing Office Windows: Quality of View, Daylight and Energy Efficiency. Applied Energy. 261(5):205-221. [DOI:10.1016/j.apenergy.2019.114356]
23. Reinhart, C., Mardaljevic, J., & Rogers, Z. (2006). Dynamic Daylight Performance Metrics for Sustainable Building Design. Journal of Illuminating Engineering Society of North America. 3(1): 7-31. [DOI:10.1582/LEUKOS.2006.03.01.001]
24. Reinhart, C, & Walkenhorst, O. (2001). Validation of Dynamic RADIANCE-Based Daylight Simulations for a Test Office with External Blinds. Energy and Buildings. 33(7): 683-97. [DOI:10.1016/S0378-7788(01)00058-5]
25. Saadatjoo, P, & Saligheh, E. (2021). The Role of Buildings Distribution Pattern on Outdoor Airflow and Received Daylight in Residential Complexes; Case Study: Residential Complexes in Tehran. Naqshejahan-Basic Studies and New Technologies of Architecture and Planning. 11(3): 67-92. [In Persian]
26. Saligheh, E. (2022). Investigating the Effect of Protrusion and Orientation of the Building on Self-Shading of the Building in Hot and Humid Climate (Case Study: Four-Story Buildings on Kish Island). Journal of Renewable and New Energy. 9(1): 49-60. [In Persian]
27. Saligheh, E., & Saadatjoo, P. (2020). Impact of Central Courtyard Proportions on Passive Cooling Potential in Hot and Humid Regions (Case Study: Single-Story Buildings in Bandar Abbas). Naqshejahan: Basic Studies and New Technologies of Architecture and Planning. 10(2): 137-52. [In Persian]
28. Serghides D., Dimitriou S., Kyprianou I., & Papanicolas C. (2017). The Adaptive Comfort Factor in Evaluating the Energy Performance of Office Buildings in the Mediterranean Coastal Cities. Energy Procedia. 134: 683-91. [DOI:10.1016/j.egypro.2017.09.588]
29. Taghizade, K., Heidari, A., & Noorzai, E. (2019). Environmental Impact Profiles for Glazing Systems: Strategies for Early Design Process. Journal of Architectural Engineering. 25(2):67-81. [DOI:10.1061/(ASCE)AE.1943-5568.0000343]
30. Talaei M., Mahdavinejad M., Azari R., Prieto A., & Sangin H. (2021). Multi-Objective Optimization of Building-Integrated Microalgae Photobioreactors for Energy and Daylighting Performance. Journal of Building Engineering. 42(2):165-179. https:..doi.org.10.1016.j.jobe.2021.102832. [DOI:10.1016/j.jobe.2021.102832]
31. Technical Deputy and Supervision of School Equipment and Renovation Organization. (2015). Regulations for the Design of Educational Buildings (Architectural Planning for Schools). Planning and budget organization of the Islamic Republic of Iran. [In Persian]
32. Technical Deputy and Supervision Organization of School Equipment and Renovation. (2006). Regulations and Criteria for the Design of Educational Spaces. Planning and budget organization of the Islamic Republic of Iran. [In persian]
33. Veillette, D., Rouleau, J., & Gosselin, L. (2021). Impact of Window-to-Wall Ratio on Heating Demand and Thermal Comfort When Considering a Variety of Occupant Behavior Profiles. Frontiers in sustainable cities. 3(12):101-116. [DOI:10.3389/frsc.2021.700794]
34. Wang W., Hong T., Ning X., Xiaodong X., Chen J., & Shan X. (2019). Cross-Source Sensing Data Fusion for Building Occupancy Prediction with Adaptive Lasso Feature Fi Ltering. Building and Environment. 162(4):213-228. [DOI:10.1016/j.buildenv.2019.106280]
35. Wymelenberg, K., & Den, V. (2014). Visual Comfort, Discomfort Glare, and Occupant Fenestration Control: Developing a Research Agenda. LEUKOS: Journal of Illuminating Engineering Society of North America. 10(4):207-221. [DOI:10.1080/15502724.2014.939004]
36. Zahiri, S., & Altan, H. (2016). The Effect of Passive Design Strategies on Thermal Performance of Female Secondary School Buildings during Warm Season in a Hot and Dry Climate. Frontiers in Built Environment. 2(10):1-15. https:..doi.org.10.3389.fbuil.2016.00003 [DOI:10.3389/fbuil.2016.00003]
37. Zhang A., Bokel R., Van den Dobbelsteen A., Sun Y., Huang Q., & Zhang Q. (2017). Optimization of Thermal and Daylight Performance of School Buildings Based on a Multi-Objective Genetic Algorithm in the Cold Climate of China. Energy and Buildings. 139(5): 371-384. [DOI:10.1016/j.enbuild.2017.01.048]
38. Ziaee, N., & Vakilinezhad, R. (2022). Multi-Objective Optimization of Daylight Performance and Thermal Comfort in Classrooms with Light-Shelves: Case Studies in Tehran and Sari, Iran. Energy and Buildings. 254(5): 111590-615. [DOI:10.1016/j.enbuild.2021.111590]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Culture of Islamic Architecture and Urbanism Journal

Designed & Developed by : Yektaweb