1. Alhagla, Kh., Alaa, M., & Elbassuoni, R. (2019). Optimizing Windows for Enhancing Daylighting Performance and Energy Saving. Alexandria Engineering Journal. 58(1):283-90. https:..doi.org.10.1016.j.aej.2019.01.004 [
DOI:10.1016/j.aej.2019.01.004]
2. Bakmohammadi, P., & Noorzai, E. (2020). Optimization of the Design of the Primary School Classrooms in Terms of Energy and Daylight Performance Considering Occupants' Thermal and Visual Comfort. Energy Reports. 6 (1):1590-1607. 10.1016.j.egyr.2020.06.008 [
DOI:10.1016/j.egyr.2020.06.008]
3. Boubekri M., Lee J. Bub K., & Curry K. (2020). Impact of Daylight Exposure on Sleep Time and Quality of Elementary School Children. European Journal of Teaching and Education. 2(2):10-17. https:..doi.org.10.1016.j.buildenv.2024.111644 [
DOI:10.33422/ejte.v2i2.195]
4. Custódio, D., Ghisi, E., & Forgiarini Rupp, R. (2024). Thermal comfort in university classrooms in humid subtropical climate: Field study during all seasons. Building and Environment. 258(4):115-130. https:..doi.org.10.1016.j.buildenv.2024.111644
https://doi.org/10.1016/j.enbuild.2024.114556 [
DOI:10.1016/j.buildenv.2024.111644]
5. Dear, R., & Brager, K. (1997). Developing an Adaptive Model of Thermal Comfort and Preference - Final Developing an Adaptive Model of Thermal Comfort and Preference. Final Report on RP-884(ASHRAE Transactions) (pp.104-125).
6. Elwekil, E. (2015). Optimizing Classroom Acoustic Performance to Promote Children's Education and Wellbeing (Published Master's thesis). The University of Arizona, Tucson, Arizona.
7. Fallahtafti, R., & Mahdavinejad, M. (2015). Optimization of Building Shape and Orientation for Better Energy Efficient Architecture. International Journal of Energy Sector Management. 9(4):593-618. https:..doi.org.10.1108.IJESM-09-2014-0001 [
DOI:10.1108/IJESM-09-2014-0001]
8. Gursel Dino, I., & Üçoluk, G. (2017). Multiobjective Design Optimization of Building Space Layout, Energy, and Daylighting Performance. Journal of Computing in Civil Engineering. 31(5):201-235. https:..doi.org.10.1061.(ASCE)CP.1943-5487.0000669. [
DOI:10.1061/(ASCE)CP.1943-5487.0000669]
9. Javanroodi, K., Vahid, N., & Mahdavinejad, M. (2019). A Novel Design-Based Optimization Framework for Enhancing the Energy Efficiency of High-Rise Office Buildings in Urban Areas. Sustainable Cities and Society. 49(5):362-405. https:..doi.org.10.1016.j.scs.2019.101597 [
DOI:10.1016/j.scs.2019.101597]
10. Kent M., Altomonte S., Wilson R., & Tregenza P. (2017). Temporal Effects on Glare Response from Daylight. Building and Environment. 113:49-64. https:..doi.org.10.1016.j.buildenv.2016.09.002 [
DOI:10.1016/j.buildenv.2016.09.002]
11. Konis, K., Gamas, A., & Kensek, K. (2016). Passive Performance and Building Form: An Optimization Framework for Early-Stage Design Support. Solar Energy. 125:161-79. https:..doi.org.10.1016.j.solener.2015.12.020. [
DOI:10.1016/j.solener.2015.12.020]
12. Kottek M., Grieser J., Beck C., Rudolf B., & Rubel F. (2006). World Map of the Köppen-Geiger Climate Classification Updated. Meteorologische Zeitschrift. 15 (3): 259-263. https:..doi.org.10.1127.0941-2948.2006.0130 [
DOI:10.1127/0941-2948/2006/0130]
13. Lakhdari, K., Sriti, L., & Painter, B. (2021). Parametric Optimization of Daylight, Thermal and Energy Performance of Middle School Classrooms, Case of Hot and Dry Regions. Building and Environment. 204(1): 108-143. https:..doi.org.10.1016.j.buildenv.2021.108173 [
DOI:10.1016/j.buildenv.2021.108173]
14. Lamberti G., Salvadori G., Leccese F., Fantozzi F., & Bluyssen Ph. (2021). Advancement on Thermal Comfort in Educational Buildings: Current Issues and Way Forward. Sustainability. 13(18):107-123. https:..doi.org.10.3390.su131810315 [
DOI:10.3390/su131810315]
15. Mahdavinejad, M., Tahbaz, M., & Dolatabdi, T. (2016). Optimization of Proportions and How to Use the Light Rack in the Architecture of Classrooms. Journal of Fine Arts: Architecture & Urban Planning. 21(2):81-92. https:..doi.org. 10.22059.jfaup.2016.60164 [In Persian]
16. Moghtadinejad, M., & Pashaei, S. (2016). Investigating the Impact of Parametric Architecture Design Process Based on Algorithmic Design, A New Approach in the Digital Architecture Design in Line with Sustainable Architecture Goals. International conference on modern research in civil engineering, architectural and urban development. 3:65-76. https:..sid.ir.paper.910528.en
17. Nesma F., Akila B., Djamel A., & Atef A. (2023). Optimizing Visual Comfort in School Buildings Through Parametric Design. PERIODICO di MINERALOGIA. 92(3):74-91.
18. Nicol, F., Humphreys, M., & Roaf, S. (2012). Adaptive Thermal Comfort Theory, Principles and Practice. Routledge publications. [
DOI:10.4324/9780203123010]
19. Niza, I., Mendes da Luz, I., & Eduardo Broday, E. (2023). Thermal Comfort Assessment in University Classrooms: A Discriminant Analysis for Categorizing Individuals According to Gender and Thermal Preferences, Atmosphere. 14:1325-1342. [
DOI:10.3390/atmos14091325]
20. Othman, A., & Mohd Mazli, M. (2012). Influences of Daylighting towards Readers' Satisfaction at Raja Tun Uda Public Library, Shah Alam. Procedia - Social and Behavioral Sciences. 68: 244-57. [
DOI:10.1016/j.sbspro.2012.12.224]
21. Ouria, M. (2019). Solar Energy Potential According to Climatic and Geometrical Parameters of Cities and Buildings: A Case-Study from Tabriz City- Iran. Urban Climate. 28: 100469. https:..doi.org.https:..doi.org.10.1016.j.uclim.2019.100469. [
DOI:10.1016/j.uclim.2019.100469]
22. Pilechiha P., Mahdavinejad M., Pour Rahimian P., Carnemolla P., & Seyedzadeh S. (2020). Multi-Objective Optimisation Framework for Designing Office Windows: Quality of View, Daylight and Energy Efficiency. Applied Energy. 261(5):205-221. [
DOI:10.1016/j.apenergy.2019.114356]
23. Reinhart, C., Mardaljevic, J., & Rogers, Z. (2006). Dynamic Daylight Performance Metrics for Sustainable Building Design. Journal of Illuminating Engineering Society of North America. 3(1): 7-31. [
DOI:10.1582/LEUKOS.2006.03.01.001]
24. Reinhart, C, & Walkenhorst, O. (2001). Validation of Dynamic RADIANCE-Based Daylight Simulations for a Test Office with External Blinds. Energy and Buildings. 33(7): 683-97. [
DOI:10.1016/S0378-7788(01)00058-5]
25. Saadatjoo, P, & Saligheh, E. (2021). The Role of Buildings Distribution Pattern on Outdoor Airflow and Received Daylight in Residential Complexes; Case Study: Residential Complexes in Tehran. Naqshejahan-Basic Studies and New Technologies of Architecture and Planning. 11(3): 67-92. [In Persian]
26. Saligheh, E. (2022). Investigating the Effect of Protrusion and Orientation of the Building on Self-Shading of the Building in Hot and Humid Climate (Case Study: Four-Story Buildings on Kish Island). Journal of Renewable and New Energy. 9(1): 49-60. [In Persian]
27. Saligheh, E., & Saadatjoo, P. (2020). Impact of Central Courtyard Proportions on Passive Cooling Potential in Hot and Humid Regions (Case Study: Single-Story Buildings in Bandar Abbas). Naqshejahan: Basic Studies and New Technologies of Architecture and Planning. 10(2): 137-52. [In Persian]
28. Serghides D., Dimitriou S., Kyprianou I., & Papanicolas C. (2017). The Adaptive Comfort Factor in Evaluating the Energy Performance of Office Buildings in the Mediterranean Coastal Cities. Energy Procedia. 134: 683-91. [
DOI:10.1016/j.egypro.2017.09.588]
29. Taghizade, K., Heidari, A., & Noorzai, E. (2019). Environmental Impact Profiles for Glazing Systems: Strategies for Early Design Process. Journal of Architectural Engineering. 25(2):67-81. [
DOI:10.1061/(ASCE)AE.1943-5568.0000343]
30. Talaei M., Mahdavinejad M., Azari R., Prieto A., & Sangin H. (2021). Multi-Objective Optimization of Building-Integrated Microalgae Photobioreactors for Energy and Daylighting Performance. Journal of Building Engineering. 42(2):165-179. https:..doi.org.10.1016.j.jobe.2021.102832. [
DOI:10.1016/j.jobe.2021.102832]
31. Technical Deputy and Supervision of School Equipment and Renovation Organization. (2015). Regulations for the Design of Educational Buildings (Architectural Planning for Schools). Planning and budget organization of the Islamic Republic of Iran. [In Persian]
32. Technical Deputy and Supervision Organization of School Equipment and Renovation. (2006). Regulations and Criteria for the Design of Educational Spaces. Planning and budget organization of the Islamic Republic of Iran. [In persian]
33. Veillette, D., Rouleau, J., & Gosselin, L. (2021). Impact of Window-to-Wall Ratio on Heating Demand and Thermal Comfort When Considering a Variety of Occupant Behavior Profiles. Frontiers in sustainable cities. 3(12):101-116. [
DOI:10.3389/frsc.2021.700794]
34. Wang W., Hong T., Ning X., Xiaodong X., Chen J., & Shan X. (2019). Cross-Source Sensing Data Fusion for Building Occupancy Prediction with Adaptive Lasso Feature Fi Ltering. Building and Environment. 162(4):213-228. [
DOI:10.1016/j.buildenv.2019.106280]
35. Wymelenberg, K., & Den, V. (2014). Visual Comfort, Discomfort Glare, and Occupant Fenestration Control: Developing a Research Agenda. LEUKOS: Journal of Illuminating Engineering Society of North America. 10(4):207-221. [
DOI:10.1080/15502724.2014.939004]
36. Zahiri, S., & Altan, H. (2016). The Effect of Passive Design Strategies on Thermal Performance of Female Secondary School Buildings during Warm Season in a Hot and Dry Climate. Frontiers in Built Environment. 2(10):1-15. https:..doi.org.10.3389.fbuil.2016.00003 [
DOI:10.3389/fbuil.2016.00003]
37. Zhang A., Bokel R., Van den Dobbelsteen A., Sun Y., Huang Q., & Zhang Q. (2017). Optimization of Thermal and Daylight Performance of School Buildings Based on a Multi-Objective Genetic Algorithm in the Cold Climate of China. Energy and Buildings. 139(5): 371-384. [
DOI:10.1016/j.enbuild.2017.01.048]
38. Ziaee, N., & Vakilinezhad, R. (2022). Multi-Objective Optimization of Daylight Performance and Thermal Comfort in Classrooms with Light-Shelves: Case Studies in Tehran and Sari, Iran. Energy and Buildings. 254(5): 111590-615. [
DOI:10.1016/j.enbuild.2021.111590]