----------------------------------- ---------------------------------------------------
Volume 9, Issue 2 (Semi-Annual 2024)                   CIAUJ 2024, 9(2): 1-24 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nabeghvatan S, Nabeghvatan R. Innovative Strategies in Smart Building Design: Evolution through Scenario planning in the Architecture Industry. CIAUJ 2024; 9 (2) :1-24
URL: http://ciauj-tabriziau.ir/article-1-571-en.html
1- Department of Industrial Management, Tarbiat Modares University, Tehran, Iran
2- Department of Architecture, Yıldız Technical University, Istanbul,Turkey , roshanak.nabeghvatan@std.yildiz.edu.tr
Abstract:   (1094 Views)
The integration of smart technologies in modern buildings has revolutionized the way buildings are designed, constructed, and operated. However, rapid advancements in smart building technologies have posed complex challenges, particularly in integrating and effectively utilizing these technologies to maximize building efficiency, sustainability, and user comfort. This research aims to enhance understanding of this issue by elucidating the benefits and potential applications of scenario planning as a strategic tool in designing smart buildings. Key questions addressed include: How can scenario planning be used to address the integration challenges of smart technologies? What are the critical drivers influencing smart building design? By employing scenario-based approaches to create more housing using new technologies and improve residential quality of life, this study identifies key drivers: "Legal and Social Framework" and "Technology Acceptance and Integration" through expert consultations and the Intuitive Logic Scenario Planning method. This led to the development of four scenarios: the Coordinated Horizon Scenario, the Disruptive Crossroads Scenario, the Renaissance of Regulations Scenario, and the Resilience and Recession Scenario. After comprehensive scenario development, an analysis of the strengths, weaknesses, opportunities, and threats of each scenario was conducted, yielding key insights. Ultimately, based on the results obtained, a comprehensive and coherent approach for innovative strategies in designing smart buildings was presented, encompassing important options such as prioritizing user-centered design principles, supporting regulatory frameworks, embracing continuous learning, adaptability, and agility, promoting social justice and equal opportunities, and enhancing resilience to crises.
Full-Text [PDF 1507 kb]   (353 Downloads)    
Type of Study: Original Article | Subject: Identifying the way of life based on the three components of the body, lifestyle and concepts - meanings
Received: 2024/06/22 | Accepted: 2024/09/24 | ePublished: 2024/12/28

References
1. Abo-El-Wafa, H., Yeshitela, K., & Pauleit, S. (2018). The use of urban spatial scenario design model as a strategic planning tool for Addis Ababa. Landscape and Urban Planning, 180: 308-318. [DOI:10.1016/j.landurbplan.2017.08.004]
2. Al Dakheel, J., Del Pero, C., Aste, N., & Leonforte, F. (2020). Smart buildings features and key performance indicators: A review. Sustainable Cities and Society, 61, 102328. [DOI:10.1016/j.scs.2020.102328]
3. Alahi, M. E. E., Sukkuea, A., Tina, F. W., Nag, A., Kurdthongmee, W., Suwannarat, K., & Mukhopadhyay, S. C. (2023). Integration of IoT-enabled technologies and artificial intelligence (AI) for smart city scenario: recent advancements and future trends. Sensors, 23(11), 5206. [DOI:10.3390/s23115206]
4. Anastasi, G., Bartoli, C., Conti, P., Crisostomi, E., Franco, A., Saponara, S., ... & Vallati, C. (2021). Optimized energy and air quality management of shared smart buildings in the covid-19 scenario. Energies, 14(8), 2124. [DOI:10.3390/en14082124]
5. Apanavičienė, R., & Shahrabani, M. M. N. (2023). Key factors affecting smart building integration into smart city: technological aspects. Smart Cities, 6(4): 1832-1857. [DOI:10.3390/smartcities6040085]
6. Benavente-Peces, C. (2019). On the energy efficiency in the next generation of smart buildings-Supporting technologies and techniques. Energies, 12(22), 4399. [DOI:10.3390/en12224399]
7. Bibri, S. E. (2020). A methodological framework for futures studies: integrating normative backcasting approaches and descriptive case study design for strategic data-driven smart sustainable city planning. Energy Informatics, 3, 1-42. [DOI:10.1186/s42162-020-00133-5]
8. Bokolo, A. J. (2023). Data driven approaches for smart city planning and design: a case scenario on urban data management. Digital Policy, Regulation and Governance, 25(4): 351-367. [DOI:10.1108/DPRG-03-2022-0023]
9. Bradfield, R., Derbyshire, J., & Wright, G. (2016). The critical role of history in scenario thinking: Augmenting causal analysis within the intuitive logics scenario development methodology. Futures, 77: 56-66. [DOI:10.1016/j.futures.2016.02.002]
10. Cubuk, G. (2023). Spatial Integrity Through Sequences: Contemporary Scenario Planning Techniques For Architectural Design. Mimarlık Ve Yaşam, 8(2): 239-255.
11. Dai, X., Liu, J., & Zhang, X. (2020). A review of studies applying machine learning models to predict occupancy and window-opening behaviours in smart buildings. Energy and Buildings, 223, 110159. [DOI:10.1016/j.enbuild.2020.110159]
12. Dalirazar, S., & Sabzi, Z. (2023). Strategic analysis of barriers and solutions to development of sustainable buildings using PESTLE technique. International Journal of Construction Management, 23(1): 167-181. [DOI:10.1080/15623599.2020.1854931]
13. Ebolor, A. (2023). Backcasting frugally innovative smart sustainable future cities. Journal of Cleaner Production, 383, 135300. [DOI:10.1016/j.jclepro.2022.135300]
14. Eilouti, B. (2018). Scenario-based design: New applications in metamorphic architecture. Frontiers of Architectural Research, 7(4): 530-543. [DOI:10.1016/j.foar.2018.07.003]
15. Galán-Madruga, D. (2023). Environmental Data Control in Smart Buildings: Big Data Analysis and Existing IoT Technological Systems. In IoT Enabled Computer-Aided Systems for Smart Buildings (pp. 1-18). Cham: Springer International Publishing. [DOI:10.1016/j.buildenv.2022.109818]
16. Hakimi, S. M., & Hasankhani, A. (2020). Intelligent energy management in off-grid smart buildings with energy interaction. Journal of Cleaner Production, 244, 118906. [DOI:10.1016/j.jclepro.2019.118906]
17. Han, Y., Fang, X., Zhao, X., & Wang, L. (2023). Exploring the impact of incentive policy on the development of prefabricated buildings: A scenario-based system dynamics model. Engineering, Construction and Architectural Management. [DOI:10.1108/ECAM-01-2023-0084]
18. Iqbal, A., Ullah, F., Anwar, H., Kwak, K. S., Imran, M., Jamal, W., & ur Rahman, A. (2018). Interoperable Internet-of-Things platform for smart home system using Web-of-Objects and cloud. Sustainable Cities and Society, 38: 636-646. [DOI:10.1016/j.scs.2018.01.044]
19. Jayashankara, M., Shah, P., Sharma, A., Chanak, P., & Singh, S. K. (2023). A novel approach for short-term energy forecasting in smart buildings. IEEE Sensors Journal, 23(5): 5307-5314. [DOI:10.1109/JSEN.2023.3237876]
20. Jung, Y., Heo, Y., Cho, H., Kang, Y. T., Kim, Y., & Lee, H. (2023). A plan to build a net zero energy building in hydrogen and electricity-based energy scenario in South Korea. Journal of Cleaner Production, 397, 136537. [DOI:10.1016/j.jclepro.2023.136537]
21. Kumar, A., Sharma, S., Goyal, N., Singh, A., Cheng, X., & Singh, P. (2021). Secure and energy-efficient smart building architecture with emerging technology IoT. Computer Communications, 176: 207-217. [DOI:10.1016/j.comcom.2021.06.003]
22. Minoli, D., Sohraby, K., & Occhiogrosso, B. (2017). IoT considerations, requirements, and architectures for smart buildings-Energy optimization and next-generation building management systems. IEEE Internet of Things Journal, 4(1): 269-283. [DOI:10.1109/JIOT.2017.2647881]
23. Nabegh Vatan, Roshanak, Belali Oskoui, Keynejad, Diba, & Farbod. (2021). Investigating the role of Covid-19 in the emergence of green architecture in the future of houses - a study based on the causal layer analysis (CLA) method. Humans and Environment, 19(4), 201-219 [In Persian].
24. Paes, V. D. C., Pessoa, C. H. M., Pagliusi, R. P., Barbosa, C. E., Argôlo, M., de Lima, Y. O., ... & de Souza, J. M. (2023). Analyzing the challenges for future smart and sustainable cities. Sustainability, 15(10), 7996. [DOI:10.3390/su15107996]
25. Pichugin, S., & Klochko, L. (2020, June). Forecasting the Possible Accident Scenario on the Example of Self-framing Metal Buildings. In International Conference BUILDING INNOVATIONS (pp. 331-342). Cham: Springer International Publishing. [DOI:10.1007/978-3-030-85043-2_31]
26. Sambandam Raju, P., Mahalingam, M., & Arumugam Rajendran, R. (2019). Design, implementation and power analysis of pervasive adaptive resourceful smart lighting and alerting devices in developing countries supporting incandescent and led light bulbs. Sensors, 19(9), 2032. [DOI:10.3390/s19092032]
27. Segura, E., Belmonte, L. M., Morales, R., & Somolinos, J. A. (2023). A Strategic Analysis of Photovoltaic Energy Projects: The Case Study of Spain. Sustainability, 15(16): 12316. [DOI:10.3390/su151612316]
28. Shaharuddin, S., Maulud, K. N. A., Rahman, S. A. F. S. A., Ani, A. I. C., & Pradhan, B. (2023). The role of IoT sensor in smart building context for indoor fire hazard scenario: A systematic review of interdisciplinary articles. Internet of Things, 100803. [DOI:10.1016/j.iot.2023.100803]
29. Shinde, R., Kim, A., & Hellweg, S. (2024). Bottom-up LCA building stock model: Tool for future building-management scenarios. Journal of Cleaner Production, 434, 140272. [DOI:10.1016/j.jclepro.2023.140272]
30. Sittón-Candanedo, I., Alonso, R. S., García, Ó., Muñoz, L., & Rodríguez-González, S. (2019). Edge computing, iot and social computing in smart energy scenarios. Sensors, 19(15): 3353. [DOI:10.3390/s19153353]
31. Tahmasebinia, F., Jiang, S., Shirowzhan, S., Mann, L., & Sepasgozar, S. M. (2023). Exploring the Integration of Architectural Design and Advanced Structural Analysis for Steel-Glass Structures: A Comparative Study of Different Case Scenarios. Buildings, 13(6): 1369. [DOI:10.3390/buildings13061369]
32. Umoh, A. A., Nwasike, C. N., Tula, O. A., Adekoya, O. O., & Gidiagba, J. O. (2024). A Review Of Smart Green Building Technologies: Investigating The Integration And Impact Of Ai And Iot In Sustainable Building Designs. Computer Science & It Research Journal, 5(1): 141-165. [DOI:10.51594/csitrj.v5i1.715]
33. Yang, C., Liang, P., Fu, L., Cui, G., Huang, F., Teng, F., & Bangash, Y. A. (2022). Using 5G in smart cities: A systematic mapping study. Intelligent Systems with Applications, 14, 200065. [DOI:10.1016/j.iswa.2022.200065]
34. Yawson, R. M. (2021). The ecological system of innovation: A new architectural framework for a functional evidence-based platform for science and innovation policy. arXiv preprint arXiv:2106.15479.
35. Zhuang, H., Zhang, J., CB, S., & Muthu, B. A. (2020). Sustainable smart city building construction methods. Sustainability, 12(12): 4947. [DOI:10.3390/su12124947]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Culture of Islamic Architecture and Urbanism Journal

Designed & Developed by : Yektaweb