1. Abdel Gelil Mohamed, N., Moustafa, A., & Darwish, E. A. (2024). Structural, acoustical, and thermal evaluation of an experimental house built with reinforced/hollow interlocking compressed stabilized earth brick-masonry. Journal of Building Engineering, 86, 108790.
https://doi.org/10.1016/j.jobe.2024.108790 [
DOI:https://doi.org/10.1016/j.jobe.2024.108790]
2. Ahmad, W., Ahmad, A., Ostrowski, K. A., Aslam, F., & Joyklad, P. (2021). A scientometric review of waste material utilization in concrete for sustainable construction. Case Studies in Construction Materials, 15, e00683.
https://doi.org/10.1016/j.cscm.2021.e00683 [
DOI:https://doi.org/10.1016/j.cscm.2021.e00683]
3. Aranda-Jiménez, Y., Zuñiga-Leal, C., Moreno-Chimely, L., & Robles-Aranda, M. E. (2023). Compressed earth blocks (CEB) compression tested under two earth standards. Cogent Engineering, 10(1), 2163116. [
DOI:10.1080/23311916.2022.2163116]
4. Atabi, F., Shariat, S.M., Munavari, S.M., Rezaei Aref, M. (2009). Presentation of the environmental management program for brick kilns in Qom city, Environmental Science and Technology, (4)12: 12-1. [in Persian]
5. Aubert, J. E., & Gasc-Barbier, M. (2012). Hardening of clayey soil blocks during freezing and thawing cycles. Applied Clay Science, 65-66: 1-5.
https://doi.org/10.1016/j.clay.2012.04.014 [
DOI:https://doi.org/10.1016/j.clay.2012.04.014]
6. Boussaa, N., Kheloui, F., & Chelouah, N. (2023). Mechanical, thermal and durability investigation of compressed earth bricks stabilized with wood biomass ash. Construction and Building Materials, 364, 129874.
https://doi.org/10.1016/j.conbuildmat.2022.129874 [
DOI:https://doi.org/10.1016/j.conbuildmat.2022.129874]
7. Bredenoord, J. (2017). Sustainable building materials for low-cost housing and the challenges facing their technological developments: Examples and lessons regarding bamboo, earth-block technologies, building blocks of recycled materials, and improved concrete panels. J. Archit. Eng. Technol, 6, 1000187. 10.4172/2168-9717.1000187 [
DOI:10.4172/2168-9717.1000187]
8. Bredenoord, Jan, & Kulshreshtha, Y. (2023). Compressed Stabilized Earthen Blocks and Their Use in Low-Cost Social Housing. In Sustainability (Vol. 15, Issue 6). [
DOI:10.3390/su15065295]
9. Brito, M. R., Marvila, M. T., Linhares, J. A., & Azevedo, A. R. (2023). Evaluation of the Properties of Adobe Blocks with Clay and Manure. In Buildings (Vol. 13, Issue 3). [
DOI:10.3390/buildings13030657]
10. C. Sekhar, D., & Nayak, S. (2018). Utilization of granulated blast furnace slag and cement in the manufacture of compressed stabilized earth blocks. Construction and Building Materials, 166: 531-536.
https://doi.org/10.1016/j.conbuildmat.2018.01.125 [
DOI:https://doi.org/10.1016/j.conbuildmat.2018.01.125]
11. Giuffrida, G., Ibos, L., Boudenne, A., & Allam, H. (2024). Analysis of the thermal performances of uninsulated and bio-based insulated compressed earth blocks walls: from the material to the wall scale. Journal of Building Engineering, 90, 109370. [
DOI:10.1016/j.jobe.2024.109370]
12. Cottrell, J. A., Ali, M., Tatari, A., & Martinson, D. B. (2023). Effects of Fibre Moisture Content on the Mechanical Properties of Jute Reinforced Compressed Earth Composites. Construction and Building Materials, 373, 130848.
https://doi.org/10.1016/j.conbuildmat.2023.130848 [
DOI:https://doi.org/10.1016/j.conbuildmat.2023.130848]
13. Daneshvar, M., and Tahouri, A. (2018). Introducing raw earth blocks as environmentally friendly materials in the construction industry. The 8th International Conference on Sustainable Development, Construction and Urban Regeneration, Qom. [in Persian]
14. Dorado, P., Cabrera, S., & Rolón, G. (2022). Contemporary difficulties and challenges for the implementation and development of compressed earth block building technology in Argentina. Journal of Building Engineering, 46, 103748.
https://doi.org/10.1016/j.jobe.2021.103748 [
DOI:https://doi.org/10.1016/j.jobe.2021.103748]
15. Ghafourifard, Z., Mokhtari, M., Khobiri, M. and Jalilian, S.M. (2023). Investigation of soil blocks as a material for sustainable development, Fourth National Conference on Civil Engineering, Smart Development and Sustainable Systems, Golestan. [in Persian]
16. Ghanem, H., El Bouz, C., Ramadan, R., Trad, A., Khatib, J., & Elkordi, A. (2024). Effect of Incorporating Cement and Olive Waste Ash on the Mechanical Properties of Rammed Earth Block. Infrastructures, 9(8), 122.Goel, P., & Sharma, A. (2022). Use of Alternative Materials in Manufacturing of Concrete Paver Blocks: A Review. International Journal of Engineering Research & Technology, 11(07): 12-18. . [
DOI:10.3390/infrastructures9080122]
17. Gomaa, M., Schade, S., Bao, D. W., & Xie, Y. M. (2023). Automation in rammed earth construction for industry 4.0: Precedent work, current progress and future prospect. Journal of Cleaner Production, 398, 136569.
https://doi.org/10.1016/j.jclepro.2023.136569 [
DOI:https://doi.org/10.1016/j.jclepro.2023.136569]
18. Guerrero Baca, L. F., & Soria López, F. J. (2018). Traditional architecture and sustainable conservation. Journal of Cultural Heritage Management and Sustainable Development, 8(2), 194-206. [
DOI:10.1108/JCHMSD-06-2017-0036]
19. Guillaud, H. (2013). Cultural values of earthen architecture for sustainable development. Carlos G., Rocha S Correia M., Vernacular heritage and Earthen Architecture for Sustainable development. Taylor & Francis Group. eBook ISBN 9780429188626 [
DOI:10.1201/b15685-4]
20. Hafez, H., El-Mahdy, D., & Marsh, A. T. M. (2023). Barriers and enablers for scaled-up adoption of compressed earth blocks in Egypt. Building Research & Information, 51(7): 783-797. [
DOI:10.1080/09613218.2023.2237133]
21. Hughes, E., Valdes-Vasquez, R., & Elliott, J. W. (2017). PERCEPTIONS OF COMPRESSED EARTH BLOCK AMONG RESIDENTIAL CONTRACTORS IN NORTH CAROLINA: AN EXPLORATORY EVALUATION. Journal of Green Building, 12(4), 89-107. [
DOI:10.3992/1943-4618.12.4.89]
22. Yathrabi, H., Azami, Ahda. (2005). Utilization of "Compressed Earth Blocks (CEB)" Technology in Architecture. Kerman Architecture and Urban Development Conference. [in Persian]
23. Iftikhar, B., C. Alih, S., Vafaei, M., Javed, M. F., Ali, M., Gamil, Y., & Rehman, M. F. (2023). A machine learning-based genetic programming approach for the sustainable production of plastic sand paver blocks. Journal of Materials Research and Technology, 25: 5705-5719.
https://doi.org/10.1016/j.jmrt.2023.07.034 [
DOI:https://doi.org/10.1016/j.jmrt.2023.07.034]
24. Islam, M. S., Elahi, T. E., Shahriar, A. R., & Mumtaz, N. (2020). Effectiveness of fly ash and cement for compressed stabilized earth block construction. Construction and Building Materials, 255, 119392.
https://doi.org/10.1016/j.conbuildmat.2020.119392 [
DOI:https://doi.org/10.1016/j.conbuildmat.2020.119392]
25. Kargar, N., Shafaat, A., and Wiese, S. (2023). Making compacted clay using carpet root waste and reinforcing it with stabilizer. Housing and Rural Environment, 42(182): 124-111. [
DOI:DOI:%2010.22034/42.182.111 [in Persian]]
26. Khobiri, M., Ghafourifard, Z., Zaini, M., and Kornel Almasi, T. (2021). Protection of traditional clay and mud structures in desert cities using moisture and sound absorption methods. Architecture of Hot and Dry Climates, 9(14): 117-137. [
DOI:10.29252/ahdc.2021.16727.1556 [in Persian]]
27. Khakbaz, N., Rahimzadeh, M., Foroutan, M., Hamzeh Lu, S. (2022). Brick tectonics in the Hakim Mosque of Isfahan. Islamic Architecture and Urbanism Culture, 8 (1): 65-77. http://dx.doi.org/10.52547/ciauj.7.1.471 [in Persian]
28. Love, S. (2013). Architecture as material culture: Building form and materiality in the Pre-Pottery Neolithic of Anatolia and Levant. Journal of Anthropological Archaeology, 32(4): 746-758.
https://doi.org/10.1016/j.jaa.2013.05.002 [
DOI:https://doi.org/10.1016/j.jaa.2013.05.002]
29. Malkanthi, S. N., Balthazaar, N., & Perera, A. A. D. A. J. (2020). Lime stabilization for compressed stabilized earth blocks with reduced clay and silt. Case Studies in Construction Materials, 12, e00326.
https://doi.org/10.1016/j.cscm.2019.e00326 [
DOI:https://doi.org/10.1016/j.cscm.2019.e00326]
30. Marsh, A. T. M., & Kulshreshtha, Y. (2022). The state of earthen housing worldwide: how development affects attitudes and adoption. Building Research & Information, 50(5): 485-501. [
DOI:10.1080/09613218.2021.1953369]
31. Mirzaali, M., and Karimi, M. (2010). Construction with soil; Sustainable architectural design and technology, Tehran University Jihad Organization. [in Persian]
32. Nagaiah, M., & Ayyanar, K. (2016). Software for Data Analysis in SPSS: On over view. Indian Council of Social Science Research (ICSSR) Sponsored Two-Day National Conference on Research Methodology in Library and Information Science. https://dx.doi.org/10.2139/ssrn.4183343 [
DOI:10.2139/ssrn.4183343]
33. Omdbari, S. (2020). An analysis of the methods of strengthening brick buildings based on the use of reinforcing elements; based on the regulations and standards of brick in New Zealand, Morocco, Peru and the United States, Architecture of Hot and Dry Climates, (14)9: 260-241. [
DOI:10.29252/ ahdc.2021.15167.1435 [in Persian]]
34. Osman, N., M., H., A. M., Zakariah, Z., & Nazir, M. I. M. (2024). Evaluation of Compressed Earth Block (CEB) with the utilization of Durio Zibethinus Fiber (DZF). IOP Conference Series: Earth and Environmental Science, 1347. 10.1088/1755-1315/1347/1/012069 [
DOI:10.1088/1755-1315/1347/1/012069]
35. Pakdel, M., and Alemi, B. (2010). Brick, a sustainable material in the architecture of historical houses in the hot and dry climate of Iran. The First National Sustainable Conference, Tehran. [in Persian]
36. Papayianni, I., & Pachta, V. (2017). Earth block houses of historic centers. A sustainable upgrading with compatible repair materials. Procedia environmental sciences, 38: 274-282. [
DOI:10.1016/j.proenv.2017.03.076]
37. Pelé-Peltier, A., Charef, R., & Morel, J.-C. (2023). Factors affecting the use of earth material in mainstream construction: a critical review. Building Research & Information, 51(2): 119-137. [
DOI:10.1080/09613218.2022.2070719]
38. Rajabi, A. (2020). Identifying key drivers affecting the regeneration of the historical fabric of Tabriz city with a futures research approach. Bi-Quarterly Journal of Islamic Architecture and Urbanism, 6(2), 211-237. http://dx.doi.org/10.52547/ciauj.6.2.211 [in Persian] [
DOI:10.52547/ciauj.6.2.211]
39. Reddy, B. V. V., Morel, J.-C., Faria, P., Fontana, P., Oliveira, D. V, Serclerat, I., Walker, P., & Maillard, P. (2022). Codes and Standards on Earth Construction BT - Testing and Characterisation of Earth-based Building Materials and Elements: State-of-the-Art Report of the RILEM TC 274-TCE (A. Fabbri, J.-C. Morel, J.-E. Aubert, Q.-B. Bui, D. Gallipoli, & B. V. V. Reddy (eds.): pp. 243-259). Springer International Publishing. [
DOI:10.1007/978-3-030-83297-1_7]
40. Sadeghian, A., Abdollahi, R., Akbari, A. and Javidinejad, M. (2013). Stabilized earth blocks, an innovative material in modern earthen architecture. Design and Planning in Architecture and Urbanism, 1 (2). [
DOI:https://doi.org/10.71930/dpau.2024.1045644 [in Persian]]
41. Sathiparan, N., & Jeyananthan, P. (2024). Predicting compressive strength of cement-stabilized earth blocks using machine learning models incorporating cement content, ultrasonic pulse velocity, and electrical resistivity. Nondestructive Testing and Evaluation, 39(5): 1045-1069. [
DOI:10.1080/10589759.2023.2240940]
42. Sinha, S., & Sudarsan, J. S. (2025). Building a Greener Future: How Earth Blocks Are Reshaping Sustainability and Circular Economy in Construction. Architecture, 5(2): 25. [
DOI:10.3390/architecture5020025]
43. Tahir, A. M., & Sert, S. (2023). Effect of Olivine Additive on the Shear Resistance of Fine-Grained Soils: A Sustainable Approach for Risk Mitigation and Environmental Impact Reduction. Sustainability, 15(13), 10683. [
DOI:10.3390/su151310683]
44. Tolo Ashtiani, Sh. (2009). Guide to Construction with Earth: Application of Earth Materials in Modern Architecture. Publication Planning Department. [in Persian]
45. Udawattha, C., Galabada, H., & Halwatura, R. (2017). Mud concrete paving block for pedestrian pavements. Case Studies in Construction Materials, 7: 249-262.
https://doi.org/10.1016/j.cscm.2017.08.005 [
DOI:https://doi.org/10.1016/j.cscm.2017.08.005]
46. Vafaei, A., Kaveh, A., Sadegh Azar, M. (2009). The position of women in the development of engineering sciences in Iran, Iranian Journal of Engineering Education, (28)7: 91-52. [
DOI:10.22047/ijee.2006.2554 [in Persian]]
47. Zainal, L. A., & Burhanudin, M. K. (2023). Physical and Mechanical Properties of Compressed Earth Brick (CEB) with Palm Oil Fuel Ash (POFA) as Cement Replacement. Recent Trends in Civil Engineering and Built Environment, 4(3): 244-250.
48. Zami, M. S. (2022). Barriers hindering acceptance of earth construction in the urban context of the United Kingdom. Architectural Engineering and Design Management, 18(6): 941-958. [
DOI:10.1080/17452007.2021.1995314]
49. Zarei Hajiabadi, F., Hamzenejad, M., and Memarian, G. (2023). Analysis of the concept of adaptation in historical buildings, Bi-Quarterly Journal of Islamic Architecture and Urbanism, 9(1): 90-11. http://dx.doi.org/10.52547/ciauj.9.1.539 [in Persian] [
DOI:10.61186/ciauj.9.1.17]
50. Zoungrana, O., Bologo / Traoré, M., Messan, A., Nshimiyimana, P., & Pirotte, G. (2021). The paradox around the social Representations of Compressed Earth Block Building Material in Burkina Faso: the Material for the Poor or the luxury Material? TT - The paradox around the social Representations of Compressed Earth Block Building Material in . Open Journal of Social Sciences. [
DOI:10.4236/jss.2021.91004]