بررسی تأثیر مواد تغییرفازدهنده بر میزان مصرف انرژی در ساختمان‌های مسکونی اقلیم سرد - فرهنگ معماری و شهرسازی اسلامی
دوره 9، شماره 2 - ( دوفصلنامه 1403 )                   جلد 9 شماره 2 صفحات 66-45 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdizadeh S, Sabaghian T, Shah Hosseini A. Investigating the Effect of Phase Change Materials on Energy Consumption of Residential Buildings in Cold Climate. CIAUJ 2024; 9 (2) :45-66
URL: http://ciauj-tabriziau.ir/article-1-429-fa.html
عبدی زاده سهیلا، صباغیان طاها، شاه‌حسینی احد. بررسی تأثیر مواد تغییرفازدهنده بر میزان مصرف انرژی در ساختمان‌های مسکونی اقلیم سرد. فرهنگ معماری و شهرسازی اسلامی. 1403; 9 (2) :45-66

URL: http://ciauj-tabriziau.ir/article-1-429-fa.html


1- گروه معماری، دانشکده معماری و شهرسازی دانشگاه هنر اسلامی تبریز، تبریز، ایران
2- گروه معماری، پردیس بین‌المللی کیش، دانشگاه تهران، تهران، ایران
3- گروه طراحی، دانشکده طراحی، دانشگاه هنر اسلامی تبریز، تبریز، ایران ، ahad.shahhoseini@tabriziau.ac.ir
چکیده:   (3895 مشاهده)
جدار خارجی ساختمان به‌عنوان یکی از پارامترهای مؤثر بر تبادل حرارتی و میزان مصرف انرژی، همواره مورد بحث و بررسی بوده است. این پژوهش، باهدف بررسی مصرف انرژی و تأثیر مواد تغییرفازدهنده به عنوان عایق بر رفتار حرارتی جدارهای خارجی یک ساختمان مسکونی و تعیین دمای ذوب بهینه در اقلیم سرد تبریز انجام شد. بدین منظور، سه دمای ذوب 18، 24 و 28 درجه سانتی‌گراد انتخاب شد. روش انجام پژوهش، کمّی با رویکرد اثبات گرایانه است. یک ساختمان مسکونی پنج طبقه در تبریز با‌توجه-‌به در دسترس ‌بودن آن انتخاب شد. آنالیزها و شبیه سازی ها با افزونه‌های گرس هاپر، هانی‌بی و لیدی‌باگ صورت گرفت. نتایج نشان داد که PCM با دمای ذوب 18 درجه باوجود کاهش مصرف انرژی 16/23 درصدی در ماه های گرم، منجر به افزایش 44/1 درصدی مصرف انرژی نسبت به حالت پایه در ماه های سرد شد. PCM با دماهای ذوب 24 و 28 درجه در ماه های گرم به ترتیب به میزان 93/31 و 48/20 درصد مصرف انرژی را کاهش دادند. کاهش مصرف انرژی در ماه های سرد برای PCM با دماهای ذوب 24 و 28 درجه به ترتیب برابر با 08/36 و 15درصد بود. بیشترین کاهش مصرف انرژی در کل ماه های سال مربوط به جبهۀ جنوبی بود. به طوری که در PCM با دمای ذوب 18 درجه این کاهش به ترتیب در ماه های گرم و سرد به ترتیب به میزان 65/61 و 80/61 درصد، در PCM با دمای ذوب 24 درجه به میزان 83/65 و 5/74 درصد و در PCM با دمای ذوب 28 درجه به میزان 53/62 و 94/61 درصد نسبت به حالت پایه بود. از این رو، باتوجه‌به اقلیم سرد تبریز، استفاده از PCM با دمای ذوب 24 درجه مناسب و به لحاظ اقتصادی مقرون‌به‌صرفه است
متن کامل [PDF 2282 kb]   (145 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: شناسايي شكل زندگي مبتني بر سه مولفه کالبد، سبک زندگی و مفاهیم - معانی
دریافت: 1403/6/13 | پذیرش: 1403/8/3 | انتشار الکترونیک: 1403/10/8

فهرست منابع
1. Albayyaa, H., D. Hagare, and S. Saha. (2019). Energy conservation in residential buildings by incorporating Passive Solar and Energy Efficiency Design Strategies and higher thermal mass. Energy and Buildings, 182: 205-213. [DOI:10.1016/j.enbuild.2018.09.036]
2. Baggs, D., and N. Mortensen. 2006. Thermal mass in building design BDP environment design guide. Royal Aust Inst Architects, 4: 1-8.
3. Bai, L. J. Xie, M. M. Farid, W. Wang, and J. Liu. (2020). Analytical model to study the heat storage of phase change material envelopes in lightweight passive buildings. Building and Environment, 169, 106531. [DOI:10.1016/j.buildenv.2019.106531]
4. Bambrook, S., A. Sproul, and D. Jacob. (2009). Exploring the zero energy house concept for Sydney. In Solar09: 47th Annual Conference of the Australian and New Zealand Solar Energy Society, Townsville, James Cook University.
5. Berardi, U., and S. Soudian. (2019). Experimental investigation of latent heat thermal energy storage using PCMs with different melting temperatures for building retrofit. Energy and Buildings, 185: 180-195. [DOI:10.1016/j.enbuild.2018.12.016]
6. Fadaee, F., and P. Ildarabadi. (2019). The use of PCM material on the walls of educational buildings to increase the quality of space and reduce energy consumption (Case study: 9 classes in Mashhad). Journal of Environmental Science Studies, 4(2): 1469-1479 [In Persian].
7. Feng, L. W. Zhao, J. Zheng, S. Frisco, P. Song, and X. Li. (2011). The shape-stabilized phase change materials composed of polyethylene glycol and various mesoporous matrices (AC, SBA-15 and MCM-41). Solar energy materials and solar cells, 95(12), 3550-3556. [DOI:10.1016/j.solmat.2011.08.020]
8. Fonseca, A. T. S. Mayor, and J. B. L. M. Campos .(2018). Guidelines for the specification of a PCM layer in firefighting protective clothing ensembles. Applied Thermal Engineering, 133: 81-96. [DOI:10.1016/j.applthermaleng.2018.01.028]
9. Jiang, W. B. Liu, X. Zhang, T. Zhang, D. Li, and L. Ma. (2021). Energy performance of window with PCM frame. Sustainable Energy Technologies and Assessments, 45, 101109. [DOI:10.1016/j.seta.2021.101109]
10. Jin, X. D. Shi, M.A. Medina, X. Shi, X. Zhou, and X. Zhang. (2017). Optimal location of PCM layer in building walls under Nanjing (China) weather conditions. Journal of Thermal Analysis and Calorimetry, 129(3): 1767-1778. [DOI:10.1007/s10973-017-6307-3]
11. Kenisarin, M., and K. Mahkamov. (2016). Passive thermal control in residential buildings using phase change materials. Renew Sustain Energy Rev, 55: 371-398. [DOI:10.1016/j.rser.2015.10.128]
12. Kim, H. B. M. Mae, and Y. Choi. (2017). Application of shape-stabilized phase-change material sheets as thermal energy storage to reduce heating load in Japanese climate. Building and Environment, 125: 1-14. [DOI:10.1016/j.buildenv.2017.08.038]
13. Lee, A. D. P. Shepherd, M. C. Evernden, and D. Metcalfe. (2018). Optimizing the architectural layouts and technical specifications of curtain walls to minimize use of aluminium. Structures, 13: 8-25. [DOI:10.1016/j.istruc.2017.10.004]
14. Li, L. H. Yu, and R. Liu. (2017). Research on composite-phase change materials (PCMs)-bricks in the west wall of room-scale cubicle: Mid-season and summer day cases. Building and Environment, 123: 494-503. [DOI:10.1016/j.buildenv.2017.07.019]
15. Li, W., and W. Chen. (2019). Numerical analysis on the thermal performance of a novel PCM-encapsulated porous heat storage Trombe-wall system. Solar Energy, 188: 706-719. [DOI:10.1016/j.solener.2019.06.052]
16. Mavrigiannaki, A., and E Ampatzi. (2016). Latent heat storage in building elements: a systematic review on properties and contextual performance factors. Renew Sustain, 52: 171-178. [DOI:10.1016/j.rser.2016.01.115]
17. Meng, E. H. Yu, and B. Zhou. (2017). Study of the thermal behavior of the composite phase change material (PCM) room in summer and winter. Applied Thermal Engineering, 126: 212-225. [DOI:10.1016/j.applthermaleng.2017.07.110]
18. Mirmoghtadai, M. N. GanjiZadeh, and S. Hossein Abadi. (2018). The nature of research methods in architecture and urban design research. Architecture and Environment Research, 1(1): 1-12 [In Persian].
19. Pirasaci, Tolga. (2020). Investigation of phase state and heat storage form of the phase change material (PCM) layer integrated into the exterior walls of the residential-apartment during heating season. Energy, 207, 118176. [DOI:10.1016/j.energy.2020.118176]
20. Qu, Y. D. Zhou, F. Xue, and L. Cui. (2021). Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer. Energy and Buildings, 241, 110966. [DOI:10.1016/j.enbuild.2021.110966]
21. Sadeghipour Roudsari, Mostapha, Michelle Pak, Adrian Smith, and Gordon Gill Arcitecture. (2013). Ladybug: A parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. In Proceedings of the 13th international IBPSA conference, Lyon, France, Augest 2013: 3128-3135. [DOI:10.26868/25222708.2013.2499]
22. Saikia, P. A. S. Azad, and D. Rakshit. (2018). Thermodynamic analysis of directionally influenced phase change material embedded building walls. International journal of thermal sciences, 126: 105-117. [DOI:10.1016/j.ijthermalsci.2017.12.029]
23. Sharma, A. A. Shukla, C. R. Chen, and S. Dwivedi .(2013). Development of phase change materials for building applications. Energy and Buildings, 64: 403-407. [DOI:10.1016/j.enbuild.2013.05.029]
24. Wang, H. W. Lu, Z. Wu, and G. Zhang. (2020). Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai. Renewable Energy, 145: 52-64. [DOI:10.1016/j.renene.2019.05.124]
25. Xie, J. W. Wang, J. Liu, and S. Pan. (2018). Thermal performance analysis of PCM wallboards for building application based on numerical simulation. Solar Energy, 162: 533-540. [DOI:10.1016/j.solener.2018.01.069]
26. Yang, L. Y. Qiao, Y. Liu, X. Zhang, C. Zhang, and J. Liu. (2018). A kind of PCMs-based lightweight wallboards: Artificial controlled condition experiments and thermal design method investigation. Building and environment, 144: 194-207. [DOI:10.1016/j.buildenv.2018.08.020]
27. Zhang, Y. P. K. P. Lin, R. Yang, H. F. Di, and Y. Jiang. (2006). Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings. Energy and buildings, 38(10): 1262-1269. [DOI:10.1016/j.enbuild.2006.02.009]
28. Zhou, D., and P. Eames. (2019). Phase Change Material Wallboard (PCMW) melting temperature optimisation for passive indoor temperature control. Renewable Energy, 139: 507-514. [DOI:10.1016/j.renene.2019.02.109]
29. Zhu, N. N. Hu, P. Hu, F. Lei, and S. Li. 2019. Experiment study on thermal performance of building integrated with double layers shape-stabilized phase change material wallboard. Energy, 167: 1164-1180. [DOI:10.1016/j.energy.2018.11.042]

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به فرهنگ معماری و شهرسازی اسلامی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Culture of Islamic Architecture and Urbanism Journal

Designed & Developed by : Yektaweb